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In order to extract small-scale statistical information from passive scalar fields obtai-
ned by direct numerical simulation (DNS) a new method of analysis is introduced.
It consists of determining local minimum and maximum points of the fluctuating
scalar field via gradient trajectories starting from every grid point in the directions of
ascending and descending scalar gradients. The ensemble of grid cells from which the
same pair of extremal points is reached determines a spatial region which is called a
‘dissipation element’. This region may be highly convoluted but on average it has an
elongated shape with, on average, a nearly constant diameter of a few Kolmogorov
scales and a variable length that has the mean of a Taylor scale. We parameterize the
geometry of these elements by the linear distance between their extremal points and
their scalar structure by the absolute value of the scalar difference at these points.

The joint p.d.f. of these two parameters contains most of the information needed
to reconstruct the statistics of the scalar field. It is decomposed into a marginal
p.d.f. of the linear distance and a conditional p.d.f. of the scalar difference. It is
found that the conditional mean of the scalar difference follows the 1/3 inertial-range
Kolmogorov scaling over a large range of length-scales even for the relatively small
Reynolds number of the present simulations. This surprising result is explained by
the additional conditioning on minima and maxima points.

A stochastic evolution equation for the marginal p.d.f. of the linear distance is
derived and solved numerically. The stochastic problem that we consider consists of
a Poisson process for the cutting of linear elements and a reconnection process due to
molecular diffusion. The resulting length-scale distribution compares well with those
obtained from the DNS.

1. Introduction
There have been many attempts to define the geometrical elements that one intui-

tively believes to represent ‘eddies’ of different size in turbulent flows. Discussions
go back to Townsend (1951) who suggested that turbulent motion is essentially a
random distribution of vortex sheets and tubes. More recently, Wray & Hunt (1990)
subdivided the three-dimensional vortical field obtained from direct numerical simula-
tions (DNS) into four types of space-filling regions, classifying them tentatively by
characteristic values of the second invariant of the velocity derivative tensor as well
as by the pressure.

Basically, eddies are statistical entities and any statistical evaluation in terms of a
distribution function, for example, requires a clear definition of the quantity to be
sampled. When eddies are viewed as random geometrical elements, the subject of
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geometrical statistics in turbulence must be addressed. Corrsin (1971) differentiates
between points, lines, surfaces and volumes that may be of possible physical interest
and asks the following questions: “(1) What types (of geometry) are ‘naturally’
identifiable in turbulent flows? (2) What roles do they play or what properties do
they have? and (3) What stochastic games can we invent which share some of the
difficulties of the turbulent case, but are more treatable?”

It is clear that in order to address these questions one first needs to construct a
suitable method which can identify specific geometrical elements in the turbulent flow.
Which method one should choose is by no means evident. Tsinober (2001) points to
the generic ambiguity in defining the meaning of scales and argues that it depends on
the chosen decomposition/representation such as Fourier, Wavelet, proper orthogonal
(POD) and others. These methods typically only analyse the dependent variables and
their derivatives in a turbulent field in order to extract statistical properties, but they
are not focused on geometry as such. Even fractal or multifractal analysis, which
clearly addresses aspects of geometry, reduces the information to scaling exponents
or other properties of self-similar geometry, cf. Meneveau & Sreenivasan (1991) and
Frisch (1995). Interestingly, in Tsinober (2001), there are three sections, each entitled
“Geometrical statistics”, within chapters 4, 6 and 7. Here statistics of gradients of
velocity and scalars as well as local alignments are discussed, but no references
to papers dealing with the statistics of finite-size structures are given. This lack of
relevant work is probably due to the difficulty of clearly defining shapes and length
scales in turbulence.

An attempt to overcome this problem was made by Miyauchi & Tanahashi (2001).
They visualized contour surfaces of the second invariant of the velocity gradient
tensor and thereby identified tube-like vortex filaments in homogeneous turbulent
shear flows generated by DNS. Then they divided those filaments into segments
between local minima of the second invariant. They derived p.d.f.s of segment length
normalized by the Taylor microscale and concluded that the fine-scale structure is
directly related to that scale. Another example for length-scale p.d.f.s is found in
Jimenez & Wray (1998) for the radius of vortex filaments. In a log-linear plot these
p.d.f.s display an exponential decay for large length scales, a property that we will
rediscover for the length-scale distribution in this paper. Also, when the data of
Miyauchi & Tanahashi (2001) are replotted on a log-linear scale, an exponential tail
is found, the slope of which, however, depends on the Reynolds number.

The objective of the present paper is to set the basis for prediction methods of
scalar fields that incorporate information from length scales below the integral scales.
Of particular interest for us are the p.d.f. of the scalar φ and the conditional scalar dis-
sipation rate 〈χ |φ〉 where the instantaneous dissipation rate is defined as χ = 2D(∇φ′)2,
since these are required for the prediction of turbulence–chemistry interaction in non-
premixed turbulent combustion, cf. Peters (2000). Previous attempts to model them
on the basis of integral quantities such as the turbulent kinetic energy, its dissipation
and the scalar mean and variance using presumed shapes must remain unsatisfactory,
because they do not take small-scale information into account. The influence of heat
release on the shape of the conditional scalar dissipation was investigated by Pantano,
Sarkar & Williams (2003) using DNS.

In order to capture the small-scale structure of the fluctuating scalar field we
will subdivide it into finite-size regions within which it varies monotonically. For
illustration, part of a larger two-dimensional scalar field is sketched in figure 1,
showing four maximum points which are grouped around one central minimum
point. By analogy to geological topography this configuration may be identified as
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Figure 1. Schematic sketch of a two-dimensional scalar field including the trajectories from an
initial point to the minimum and maximum points. The solid lines are geodetic lines bounding
four repeating units corresponding to dissipation elements, while the dashed lines are geodetic
beyond these units.

a crater surrounded by a closed ridge line having four local summits. There are
four more minimum points at the periphery. Also shown are iso-scalar lines around
these extremal points and geodetic lines that connect two maxima or minima and
pass through a saddle point. It is evident that along the geodetic lines the scalar
gradient in the normal directions vanishes. There are four repeating units bounded
by geodetic lines shown in figure 1 in which the scalar field varies monotonically.
These regions may be identified numerically by placing a uniform grid over the
entire domain and by starting trajectories from every grid point in the directions of
ascending and descending scalar gradients. We will assume that the scalar field, due to
the smoothing effects of diffusion, satisfies the conditions for a Morse function. This
is a sufficiently smooth function which can be presented in a pure quadratic form
in the vicinity of extremal points. Then D’Acunto & Kurdyka (2004) have shown
that any local extremal point can be joint by a gradient trajectory of finite length.
The two trajectories shown in the upper right repeating unit in figure 1 will then
inevitably reach the minimum and the maximum points of the unit. The trajectories
will not be able to leave the unit, which is bounded by zero normal gradient lines (in
two-dimensions) or zero normal surfaces (in three-dimensions). The ensemble of grid
cells from which the same pair of minimum and maximum points are reached define a
spatial region which will be called a dissipation element.

Gibson (1968) was the first to analyse in detail the properties of zero-gradient
points and minimal gradient surfaces in passive scalar turbulence with a mean
scalar gradient. He pointed out that in one dimension the number of minimum
and maximum points should be equal, while in two-dimensions their sum should be
equal to the number of saddle points, as it is evident from figure 1. However, saddle
points may merge such that extremal points are connected to fewer saddle points



460 L. Wang and N. Peters

than shown in figure 1. Even in the case where all saddle points connecting one
extremal point have merged into a single one, the trajectories would also merge and
follow the geodetic line to reach the extremal point. In three dimensions the topology
may be much more complicated, cf. Moffatt (2001), and no definite prediction about
the number of saddle points – and saddle lines, which are also possible in three
dimensions – can be made. We have searched for ideal shapes of single dissipation
elements that would fill the three-dimensional space uniformly. We found that a cube
would be one example where the two extremal points lie at opposite corners while
the other six corners would be saddle points. Another ideal shape is an octahedron
having the two extremal points at the vertices and four saddle points, connected by
saddle lines, at the corners of the square base. In order to fill a three-dimensional
space subdivided into cubes uniformly, the vertices of the octahedrons have to be
placed at the centre of the cubes, while the bases lie at the surfaces separating two
cubes. However, the reality in three-dimensional turbulence is far from such ideal
shapes as we will see below.

Having defined finite-size space-filling regions within which the fluctuating scalar
field varies monotonically a first task should be to derive a model for the scalar
fluctuations within these regions (expecting them to be smaller than for the entire
field). This will be called the local structure. A second task must be to parameterize
the shape of the region and the change of the scalar within it in terms of suitable
parameters. Since these parameters pi vary randomly one obtains a joint p.d.f. P (pi)
of those parameters. Finally, the joint p.d.f. must be modelled. With these two models
one should be able to reconstruct statistical properties such as the scalar p.d.f. or
the conditional scalar dissipation rate. For instance, when the local scalar dissipation
rate χL is known as a function of the scalar and of n parameters p1, p2, . . . , pn the
conditional scalar dissipation rate can be reconstructed from

〈χ |φ〉 =

∫∫
. . .

∫
χL(φ, p1, p2, . . . , pn)P (p1, p2, . . . , pn) dp1 dp2 . . . dpn. (1.1)

The first task was undertaken in Peters & Trouillet (2002) where models for the
local structure of the p.d.f. and the scalar dissipation rate were derived for segments
between minimum and maximum points of a one-dimensional scalar profile . These
models were then used to reconstruct the scalar p.d.f. and the conditional scalar
dissipation rate obtained from DNS of a turbulent mixing layer by Rogers & Moser
(1994), showing reasonable agreement when the joint p.d.f. of the relevant parameters
was taken from the DNS. Therefore we focus in this paper on the second task.
We will analyse the joint p.d.f. of two of the parameters that we believe to be the
most important: the linear distance between the minimum and the maximum of a
dissipation element and the absolute value of the scalar difference at these points. A
third parameter identified in Peters & Trouillet is the algebraic mean of the maximum
and the minimum value of the scalar, but since this parameter turns out to be
statistically independent of the two others, we will not include it here.

The paper is organized as follows: In the next section we will present the
instantaneous and average shapes of the elements and draw a physical picture of how
they interact with the turbulent flow which we visualize as vortex tubes and strain
sheets. In § 3 we will present the joint p.d.f. and show that the conditional mean of
the scalar difference follows the Kolmogorov scaling law for the structure function,
namely the 1/3 power law. In § 4 we will derive a stochastic evolution equation for
the length-scale distribution function by analysing the transition of grid cells between
different classes of elements due to cutting and reconnection processes. The length
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Case 1 2 3

No. of grid cells 2563 5123 1283

Viscosity ν 0.01 0.003 0.01
r.m.s. velocity 1.58 1.304 1.1334
Turbulent kinetic energy k 3.75 2.55 1.927
Dissipation ε 1.64 0.939 0.905
Mean scalar variance 〈φ′2〉 0.0538 0.0294 0.0242
Mean scalar dissipation 〈χ〉 0.04453 0.0255 0.0226
S k/ε 3.430 4.073 3.194
No. of elements 7801 75 302 6476
No. of extremal points 2384 20 413 2052
Kolmogorov scale η 0.0279 0.013 0.0324
Taylor scale λ 0.478 0.285 0.4614
Mean length lm 1.037 0.492 0.946
Reλ 75.5 123.9 52.3
�x/η 0.850 0.944 1.515

Table 1. Resolution and calculated turbulence parameters for three DNS cases.

scale will be defined as the linear distance between the minimum and the maximum
points of an element. We will compare this distribution with those extracted from the
DNS. The paper ends with a short outlook and conclusion.

2. Shapes and spatial distribution of dissipation elements
We have performed four DNS within a cubic box of 2π side length for homogeneous

incompressible turbulent shear flow with an imposed velocity gradient S = d〈u1〉/
dx2 = 1.5. In addition, the field of a passive scalar with unity Prandtl number and an
imposed scalar gradient of d〈φ〉/dx2 = 1/(2π) was calculated. The three cases listed
in table 1 differ by the number of grid cells and the choice of the viscosity ν, which
varies from ν = 0.003 for case 2 to ν = 0.01 for cases 1 and 3. The Reynolds number
based on the Taylor scale ranged from Reλ = 52.3 to Reλ = 123.9 as shown in table 1.
In all cases the ratio of the grid length to the Kolmogorov scale �x/η is less than
the limiting value of 2.1 suggested by Pope (2000), but for a sufficiently accurate
calculation of trajectories a resolution of �x/η < 1 was found to be necessary.

A spectral collocation method was used to transform the incompressible Navier–
Stokes equations for velocity and the equation for the passive scalar as well as the
Poisson equation for the pressure into Fourier space. A third-order Runge–Kutta
algorithm was used for time advancement. The continuity equation was satisfied by
adding to right-hand side of each of the momentum equations a negative decay
term proportional to the respective velocity component and to the divergence of the
velocity field. The code is an incompressible version of the spectral code by Sarkar
(1995). From the Fourier coefficients not only the values of the passive scalar but also
its derivatives in the three spatial directions can be calculated. In order to identify
minima and maxima points trajectories in the directions of ascending and descending
gradients were calculated starting from every grid point in the box. For this purpose
the gradient fields were linearly interpolated during the marching process.

The scalar fields to be analysed were obtained in the three cases listed in table 1
at a time larger than 25 eddy turnover times when S k/ε, after an overshoot, tends
to the theoretical plateau value of 3.3, around which it oscillated strongly, however.
The theoretical plateau value follows from a balance of production and dissipation



462 L. Wang and N. Peters

λ
λ

(a) (b)

(i)

(ii)

Figure 2. The interaction of a dissipation element with a vortex filament visualized from the
DNS data of (a) case 3 and (b) case 1. (i) Trajectories are colour coded by the local value of
the scalar; (ii) trajectories are colour coded by the local value of the scalar dissipation rate.

in the equation for the turbulent kinetic energy. In order to collect enough data for
the statistics several consecutive scalar fields needed to be analysed by the gradient
trajectory method. While data from only one field were used in case 2, 10 fields were
needed in case 1 and 20 fields in case 3 covering a time span of up to three eddy
turnover times. During that time span the turbulent kinetic energy did not change
more than 10%.

Typical shapes of individual dissipation elements for the passive scalar field from
cases 3 and 1 are shown in figures 2(a) and 2(b) together with vortex filaments. The
shapes of the dissipation elements were obtained by plotting the trajectories between
the minimum point and the maximum point of the fluctuating scalar. Their colour
coding characterizes the value of the scalar (figures 2(a)(i) and 2(b)(i)) or the local
scalar dissipation rate (figures 2(a)(ii) and 2(b)(ii)). The shapes of vortex filaments
were obtained by visualizing contour surfaces of the second invariant of the velocity
gradient tensor Q =ω2 − sij sij where ω2 is the enstrophy and sij is the strain tensor.

The dissipation element in figure 2(a)(i) is partly wrapped around such a vortex
filament. The axis of this tube is nearly perpendicular to the overall scalar gradient,
which is in the direction of a straight line between the scalar minimum (blue) on the
right-hand side and the maximum (red) on the left-hand side. Such an orientation is
in agreement with the picture drawn by Ashurst et al. (1987) of the local alignment
of vorticity and scalar gradients. They found that among the three perpendicular
strain directions there exists a high probability of alignment between scalar gradients
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and the most compressive rate of strain, while vorticity preferentially aligns with the
intermediate rate of strain.

In figure 2(a)(i) one observes a strong turning of the trajectories in the green
region. This region probably corresponds to the vicinity of a vertical saddle line. On
a saddle line itself the gradients in all three directions vanish and therefore the scalar
dissipation rate is zero. To test this hypothesis we have colour coded the trajectories
in figure 2(a)(ii) by the value of the local scalar dissipation rate, normalized between
zero (blue) and its maximum value (red). In the vicinity of the scalar minimum and
maximum points, the scalar dissipation rate is blue and therefore small, as expected. It
increases in the region where the dissipation element interacts with the vortex filament,
but decreases to very low values again in the region which we have interpreted to be
close to a saddle line. There is another, but small, increase of the scalar dissipation
rate on the elongated part on the right-hand side.

In many cases where dissipation elements closely interact with vortex filaments
we find them to be perpendicular to each other. A counterexample is shown in
figure 2(b)(i). This dissipation element is essentially aligned with two vortex filaments
which are probably counter-rotating. The element is partly wrapped around the
broader filament where it has a sheet-like shape. This sheet is bent upwards by the
influence of the second thinner vortex filament. The main body of the element is
towards the right-hand side where it becomes more volumetric. It becomes very thin
towards the left-hand side where all trajectories eventually merge into a single line.
This means that saddle points have merged in this region, probably because they have
been squeezed together by the interacting vortex filaments. The merging of saddle
points has been discussed in the introduction in the context of the two-dimensional
illustration. Finally, in figure 2(b)(ii) the trajectories have been colour coded with the
local scalar dissipation rate. Higher values of this quantity are again found in regions
where the element is wrapped around the broader vortex filament. At the sharp upper
and lower edges on the left-hand side of the element the scalar dissipation rate is
again very low, which leads to the hypothesis that these edges correspond to saddle
lines. The corner points on the right-hand side may be saddle points.

The visualization of two typical dissipation elements leads to the conclusion that
they are more convoluted and irregular in shape than vortex filaments, but that they
also are elongated structures. They are often flat near one extremal point with a sharp
edge at the other. A major difference with vortex filaments is that they are space-
filling by construction. Therefore adjacent elements, which often share one common
extremal point, must be strongly intertwined which is difficult to visualize, at least if
one wants to include vortex filaments as well.

Next we show how the elements are distributed within the cubic box. Blue minimum
and red maximum points are shown for case 1 at a fixed time in figure 3. There is an
approximately equal number of minimum and maximum points, the largest deviation
from this equality being 1% for the higher Reynolds number case 2. For each
dissipation element the minimum and maximum points have been connected by a
straight yellow line. Also shown are isosurface contours of the negative value of the
second invariant of the velocity derivative tensor Q which essentially represents the
magnitude of the local strain rate. Differently from the previous picture these contours
display a sheet-like and not a tube-like behaviour. The distribution of extremal points
is quite irregular, but at certain locations strings of minimum or maximum points
are observed. This is most evident for the string of red point in the central part of
the figure. This string seems to be embedded in a surface of large strain rates. This
may be a manifestation of the process of secondary splitting of extremal points by
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Figure 3. Distribution of extremal points and high-strain regions in the box. Red points
are maxima, blue points are minima. They are connected by yellow straight lines for each
dissipation element. Also shown are isosurface contours of the negative value of the second
invariant of Q.

local strain, as analysed by Gibson (1968). The multiplication of extremal points by
this process is probably responsible for the skewed shape of many of the dissipation
elements.

We now analyse the average radius of dissipation elements by grouping them into
classes characterized by their linear length. The volume of an element is given by
multiplying the number of its grid cells by the grid cell volume. Dividing this by the
linear length of the element provides a mean cross-sectional area. Equating this area
to that of a cylindrical rod with diameter d provides a mean diameter of the element.
Averaging the mean diameters of all elements in a class produces the surprising result
shown in figure 4 that the average diameter varies little with linear length, and even
has the tendency to decrease. Here, both the diameter and the linear length were
normalized by the Kolmogorov scale η.

The average shape of all elements was obtained by subdividing the straight line
between the minimum and maximum points of an element into several segments.
All grid cells falling into the region between end planes normal to the straight line
determine a partial volume of the dissipation element. The centre of gravity of those
grid cells in the segment determines its distance from the straight line. It is normalized
by the element length to determine the average span. Also, by equating the partial
volume to that of a cylindrical rod with length equal to the segment length, a mean
segment diameter was calculated. Normalizing it by the element length and averaging
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Figure 4. (a) Variation of the normalized diameter d/η with the normalized linear length l/η
for the three DNS cases. (b) Average shape of elements of case 1.

over all classes provides the average diameter along the chord. This average shape
of all elements from case 1, for example, is shown in figure 4(b). Here x denotes the
coordinate along the straight line and y a coordinate normal to it.

3. The joint p.d.f. of the linear distance and the absolute value of the scalar
difference

Among the many parameters that would potentially describe the statistical proper-
ties of the dissipation elements, we have chosen the linear distance l = |xmax − xmin|
between the minimum and maximum points and the absolute value of the fluctuating
scalar difference �φ′ = |φ′(xmax) − φ′(xmin)| at these points, where φ′ = φ(x) − x2 Sφ .
Figure 5 shows, for case 1 as an example, the joint p.d.f. P (�φ′, l). We believe that
this joint p.d.f. contains most of the information needed to reconstruct the statistics
of the scalar field in terms of the integral and molecular quantities given in table 1.
According to Bayes’ theorem the joint p.d.f. can be written as the product of the
conditional p.d.f. of the scalar difference P�φ′(�φ′|l) and the marginal p.d.f. Pl(l):

P (�φ′, l) = P�φ′(�φ′|l)Pl(l), (3.1)

where the marginal p.d.f. is defined by

Pl(l) =

∫ ∞

0

P (�φ′, l) d(�φ′). (3.2)

Regarding the conditional p.d.f. P�φ′(�φ′|l), we first consider its conditional mean
value

〈�φ′|l〉 =

∫ ∞

0

(�φ′)P�φ′(�φ′|l) d(�φ′). (3.3)

A linear-log plot of this mean compensated by l1/3 versus the normalized linear length
l is shown in figure 6 where the compensation is consistent with Kolmogorov’s scaling.
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Figure 5. The joint p.d.f. of the linear length and the scalar difference.
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Figure 6. Compensated conditional mean scalar difference as function of the normalized
linear length.

It is interesting to note that for all three cases the plot follows a horizontal line over the
inertial range extending over more than one order of magnitude. The proportionality
constant Cφ of the relation 〈�φ′|l〉 = Cφ 〈χ〉1/2 l1/3/ε1/6 is around Cφ = 2.8 for all three
cases. It may be surprising that the inertial-range scaling starts at approximately 7η,
which is much smaller than the values of 60η or higher quoted in the literature for
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classical structure functions. There is a fundamental difference between the conditional
mean scalar difference of dissipation elements and structure function scaling.

In order to understand this difference we have applied structure function analysis
by conditioning it for case 1 to two distinctly different regions within our dissipation
elements:

(a) to regions around the centre of dissipation elements where it starts at the
mid-point in the direction of the straight line connecting the extremal points;

(b) to regions around local extremal points with structure functions in all directions.
We compare these to the unconditional structure function Bφφ(r) and to the
conditional mean value of the scalar difference. As shown in figure 7 the square
root of the structure function for case (a) has a nearly unity exponent in the
viscous-diffusive range – as it should according to Kolmogorov’s scaling – but
bends over within the inertial range. On the other hand, the square root of the
structure function for case (b) has an exponent of 2 in the viscous diffusive range,
and nearly coincides with the unconditional structure functions in the inertial range.
The corresponding exponent 4 of the two-point correlation function can easily be
explained by expanding it into a Taylor series around zero-gradient points. This also
demonstrates that in the vicinity of extremal points the scalar field is more closely
correlated. The observation that the unconditional structure function is embedded
between the two conditional cases, following the second case more closely in the
inertial range, suggests that classical structure function analysis for relatively small
Reynolds numbers is considerably contaminated by more closely correlated regions
around extremal points. The conditional mean value 〈�φ′|l〉 for dissipation elements
may be viewed as representing the square root of the two structure functions starting
from the mid-point of the elements along the straight line in both directions, but
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Figure 8. The scalar profile along the axis of linearly connected rod-like elements with linear
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ending precisely at the first extremal point. This additional conditioning means that
they avoid the more highly correlated regions around the extremal points.

4. Theory
We have shown that, at least on average, the elements are elongated structures

with diameter of a few Kolmogorov scales but a greatly varying length. We now
are interested in the marginal probability density Pl(l) of this length l. In order to
model this p.d.f. we assume that elements are one-dimensional structures that are cut
into pieces. Such cutting corresponds physically to the generation of extremal points.
For this purpose we refer to Gibson (1968) who had also analysed the mechanism
by which extremal points are generated. He notes that in the absence of diffusion,
convective motion alone is unable to generate extremal points, because iso-scalar
surfaces will just follow the fluid motion even if this leads to very large distortions
of these surfaces (as one observes in high-Prandtl-number flows, for instance). Only
a diffusion velocity of the same magnitude as the local convective velocity is able
to generate extremal points. This analysis shows that extremal points are generated
at scales of the Obukhov–Corrsin length (D3/ε)1/4 which in our case is equal to the
Kolmogorov scale. According to this theory the generation of extremal points occurs
randomly. As the local dynamics of this process is not fully understood we postulate a
Poisson mechanism with constant frequency that cuts rod-like structures into shorter
rods, assuming that their diameter remains unchanged. This will be called the cutting
process. It will generate smaller elements by removing larger elements.

On the other hand, as dissipation elements are convected by the turbulent flow field,
local minima and maxima may be swept into close proximity thus allowing diffusion
to annihilate them. This corresponds in the one-dimensional picture of rod-like
structures to the disappearance of very small elements and thereby the reconnection
of adjacent larger elements. Imagine, for simplicity, a one-dimensional profile of the
passive scalar φ′ along the axes of such linearly connected rods, as shown in figure 8,
where one can identify local minimum and maximum points as the end parts of the
elements, each having a finite length li and a scalar difference �φ′

i . Since this profile
is subjected to diffusion due to the nature of the diffusion equation, the local minima
and maxima of very small elements move towards each other and disappear, thereby
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reconnecting the adjacent larger elements. We will call this the reconnection process.
It will generate larger elements by removing those that are reconnected. The very
small elements between them have drifted, as they disappear in length-scale space
towards zero. This will be called the drift process by diffusion. In addition there will
be another drift process due to the relative velocity of two extremal points.

Let us first ignore the drift processes and consider only the cutting and the
reconnection processes. Conceptually, we will divide the one-dimensional domain
under consideration into grid cells of equal length using a uniform mesh. Then the
length l of a dissipation element is proportional to the number of grid cells within
it. We will consider the transition of the number nl of grid cells within a class of
elements of length l. This number is nlPl(l)dl. The problem that we are considering is
a birth-and-death process which is continuous in time. The time rate of change of the
number of grid cells between different classes of elements follows a Boltzmann-type
evolution equation, cf. Van Kampen (1992),

∂

∂t
[nxPx(x, t)] dx =

∫
W (x|y)nyPy(y, t) dy dx −

∫
W (y|x)nxPx(x, t) dy dx. (4.1)

Here we have denoted by x the class under consideration, while y stands for the class
from which transitions to x occur. Furthermore, W (x|y) and W (y|x) are the transition
probability densities per unit time from y to x and from x to y, respectively. Usually
W (x|y) needs not to be equal to W (y|x). The physics of the problem are contained in
these transition probability densities.

The integrals in (4.1) represent the generation and removal of grid cells due to
the cutting and reconnection processes mentioned above. Since both these processes
generate and remove grid cells in class x there will be a total of four contributions to
the rate of change of nxPx(x, t), namely

(i) the generation by the cutting process (gc);
(ii) the removal by the cutting process (rc);
(iii) the generation by the reconnection process (gr);
(iv) the removal by the reconnection process (rr).
The disappearance of the very small elements due to merging by the drift process

concerns the class x = 0 only and will determine the boundary condition as Px(0) = 0.
After division by dx (4.1) then has four terms on the right-hand side

∂

∂t
[nxPx] =

∂

∂t
[nxPx]gc +

∂

∂t
[nxPx]rc +

∂

∂t
[nxPx]gr +

∂

∂t
[nxPx]rr, (4.2)

containing the transition probability densities Wgc (x|y), Wrc (y|x), Wgr (x|y) and
Wrr (y|x), respectively. For the cutting process we first consider the generation (gc) of
grid cells in the class of smaller elements of size x from those of a larger element of
size y. The time rate of change due to this process is therefore

∂

∂t
[nxPx]gc =

∫ ∞

x

Wgc(x|y)nyPy(y, t) dy. (4.3)

Since elements of the fixed class x are obtained by cutting elements of a class y,
where y > x, the integration is performed from x to ∞. The transition probability
density per unit time Wgc (x|y) is proportional to a rate ω (number of effective cuttings
per unit time) times the probability density Py→x(x, y) that such cutting generates
elements of class x. Therefore we obtain

Wgc(x|y) = ω(y) Py→x(x, y). (4.4)
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The rate ω(y) will be proportional to the effective cutting frequency λ per unit time
and length. It will also be proportional to the length, respectively, of elements of
class y:

ω(y) = λy. (4.5)

The density Py→x can be evaluated by imagining an element of class y which is
subdivided by the cutting process in such a way that an element of class x is
generated. Since the number of grid cells generated by this process is proportional
to the number of grid cells in the element of class x, and since the number of grid
cells within the element of class x is uniformly distributed, the probability density
Py→x (x, y) is proportional to x:

Py→x = Ax. (4.6)

Here A is the normalization factor to be determined from∫ y

0

Ax dx = 1, (4.7)

since x may vary between x =0 and x = y. From integration we readily obtain

Py→x = 2
x

y2
. (4.8)

The time rate of change due to the (gc) process is then

∂

∂t
[nxPx]gc = 2 λ

∫ ∞

x

x

y
nyPy(y, t) dy. (4.9)

Next we consider the removal (rc) of grid cells by cutting an element of class x to
smaller elements of other classes. The time rate of change of nxPx due to this process
is

∂

∂t
[nxPx]rc = − nxPx

∫ x

0

Wrc(y|x) dy, (4.10)

where

Wrc(y|x) = ω(x)Px→y. (4.11)

The rate ω(x) of this transition will now be proportional to x. Instead of (4.5)
we therefore have ω(x) = λx. The probability density of transitions Px→y will be
independent of y and uniform in 0 � y � x with the normalization condition∫ x

0

Px→y dy = 1. (4.12)

Therefore the time rate of change of the (rc) process becomes

∂

∂t
[nxPx]rc = −λxnxPx. (4.13)

Let us now consider the generation of elements by the reconnection process (gr). It
is due to the generation of larger elements of class x from a smaller element of class
y when extremal points are removed by the disappearance of very small elements. In
figure 8 the smallest element would disappear by diffusion, thereby reconnecting its
nearest neighbours. The time rate of change of nxPx due to this process is

∂

∂t
[nxPx]gr =

∫ x

0

Wgr(x|y)nyP (y, t) dy. (4.14)
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Since elements of class y cannot become larger than those of the fixed class x the
integration is performed between 0 and x.

The two extremal points of the very small elements will merge with each other and
disappear when the reconnection occurs. Attached to the two extremal points are two
adjacent elements. We will denote the rate of reconnection at each extremal point by
µ. Therefore the transition probability density per unit time of this process is

Wgr(x|y) = 2µPy→x (x, y). (4.15)

The probability density Py→x is equal to

Py→x = Pz(x − y, t), (4.16)

where z = x − y is the class of elements that combine with an element of class y to
form an element of class x. We therefore obtain for the time rate of change due to
the (gr) process

∂

∂t
[nxPx]gr = 2µ

∫ x

0

Pz (x − y, t)nyPy(y, t) dy. (4.17)

It may be noted that, apart from the factor ny , the integral on the right-hand side
is the convolution of the statistically independent densities Py(y) and Pz(z) resulting
in the density Px(x) that one obtains for the addition of random variables y and z

according to y + z = x.
Finally, the time rate of change of nxPx by the removal of one of the two smaller

elements of class x by the reconnection process (rr) is

∂

∂t
[nxPx]rr = −2µnxPx (4.18)

following arguments similar to those that led to (4.13)
Since the probability densities of the three classes of elements x, y and z are equal

to each other we will introduce the notation P (x, t) without index:

Px(x, t) = Py(y, t) = Pz(z, t) ≡ P (x, t). (4.19)

Furthermore, the number of grid cells nx and ny within the elements is proportional
to x and y, respectively, for a uniform mesh. Since the proportionality factors cancel
when nx and ny are inserted into the terms of (4.2) one obtains, after division by x,
for the time rate of change of the probability density P (x, t)

∂P (x, t)

∂t
= 2λ

∫ ∞

0

P (x + z, t) dz − λx P (x, t)

+ 2µ

∫ x

0

y

x
P (x − y, t)P (y, t) dy − 2µP (x, t). (4.20)

Here we have replaced y by y = x + z in (4.9) to obtain the first integral in a
more convenient form. The steady-state solution of this equation should yield the
exponential distribution describing the probability density of the distance between
two Poisson points along a line (Papoulis 1991, p. 355)

P (x) = ρ exp(−ρx), (4.21)

where ρ =1/〈x〉 is the mean number of elements per unit length with 〈x〉 being the
average length of elements. For the steady-state Poisson process the rates of additions
and removals of Poisson points per unit length are equal:

λ = µρ. (4.22)
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It is easily verified that, with this, (4.21) satisfies the steady-state form of (4.20). Note
that in this case the (gc) term balances the (rr) term and the (gr) term balances
the (rc) term thereby creating a cross-link between the cutting and the reconnection
processes.

We now consider the drift process that follows from the annihilation of a minimum
and a maximum point by diffusion. The velocities of extremal points relative to each
other is due to the following two contributions already described by Gibson (1968).

(a) The displacement speed vD(x) due to the diffusion of scalar isolines.
This speed scales, for small values of x, with the diffusivity D as

vD(x) =
dx

dt
= −D

x
for x → 0, (4.23)

which is the velocity at which the very small elements drift to the origin. This indicates
that vD(x) is negative for small elements but must change sign and become positive
for larger elements. In order to account for this we introduce the ansatz

vD(x) = −D

x
[1 − c (1 − exp(−2ρx)]. (4.24)

The exponential decay rate of 2ρ was chosen to agree with velocity data from
one-dimensional simulations. Note that vD is singular at the origin. This singularity
requires P (x) to be proportional to x at the origin, a property that we will use below.

(b) The relative velocity v(x) of the two extremal points.
This velocity is a stochastic variable whose mean value should depend on the element
class x. We introduce the mean compressive strain rate ā(x) by

v(x) = −ā(x) x. (4.25)

An overall compression of the axis of linearly arranged elements will increase the
number of elements in each class at a rate proportional to the compression rate, cf.
Peters & Trouillet (2002),

∂P (x, t)

∂t
= ā(x) P (x, t). (4.26)

Therefore we also have to add a source term ā(x) P (x, t) on the right-hand side of
(4.20).

Since the ensemble of elements must conserve the total length L we have the
additional condition

dL

dt
=

∫ ∞

0

(vD(x) + v(x)) P (x) dx = 0. (4.27)

Since the reconnection process is caused by the disappearance of the very small
elements at the origin x = 0, the reconnection rate µ must be associated with this
disappearance. During a small time span �t elements of the classes 0 < x < �x drift
to the origin and disappear there such that, by integration of (4.23), �x is related to
�t:

(�x)2 = 2D�t. (4.28)

The number of small elements disappearing is, in the limit �x → 0,

∫ �x

0

P (x) dx =

∫ �x

0

x
∂P

∂x

∣∣∣∣∣
x=0

dx =
(�x)2

2

∂P

∂x

∣∣∣∣∣
x=0

, (4.29)
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since P (0) = 0. This number is proportional to the reconnection rate µ times the time
span �t , namely µ �t . With (4.28) and (4.29) this leads to

µ = D
∂P

∂x

∣∣∣∣
x=0

. (4.30)

Using this and adding the two drift terms and the source term to (4.20), after
normalization of vD(x), ā, P and x, y and z by the mean value 〈x〉 = 1/ρ and D accord-
ing to

x̃ = ρx, ỹ = ρy, z̃ = ρz, ṽD = vD/(ρD), ã = ā/(ρ2D), P̃ (x̃, t) = P (x, t)/ρ, (4.31)

one obtains the final equation

∂P̃ (x̃, t)

∂t
+

∂[ṽD(x̃)P (x̃, t)]

∂x̃
− ∂[ãx̃P (x̃, t)]

∂x̃
= Λ

[
2

∫ ∞

0

P̃ (x̃ + z̃, t) dz̃ − x̃P̃ (x̃, t)

]

+ 2
∂P̃

∂x̃

∣∣∣∣
x̃→0

[∫ x̃

0

ỹ

x̃
P̃ (x̃ − ỹ, t)P̃ (ỹ, t) dỹ − P̃ (x̃, t)

]
+ ã(x̃) P (x̃, t). (4.32)

Here Λ is a Péclet number defined by

Λ =
λ

ρ3D
. (4.33)

In the steady-state case it determines the mean value 〈x〉 =1/ρ. Equation (4.32) must
satisfy the normalization condition∫ ∞

0

P̃ (x̃, t) dx = 1. (4.34)

In principle, this evolution equation can describe the build-up of the length-scale
distribution starting from an initial condition (a delta function at a large length,
for instance) or the disappearance of elements once the cutting process stops. The
latter will be the case in decaying isotropic turbulence where the solution for the
final homogeneous mixture will be a delta function at the origin. Here, for the
case of continuous steady forcing by turbulence with a mean scalar gradient we are
looking for a steady-state solution for t → ∞ where the solution must also satisfy
the condition that the mean value is constant and therefore that of the normalized
variable x̃ should be unity: ∫ ∞

0

x̃P̃ (x̃) dx = 1. (4.35)

Since the mean compressive strain rate for dissipation elements cannot be derived
from first principles we consider the case ã(x̃) = 0. Then (4.27) applies to vD(x)
only and determines the constant c. The steady-state solution of (4.32) has been
calculated numerically by a finite difference method. An unsteady solution method
was applied for a chosen value of Λ, which converged to a steady state by applying
the normalization condition at each time step. The value of Λ was then varied until
(4.35) was satisfied. We obtain Λ = 5.5 and c =1.92 as part of the solution.

The comparison of this solution with the marginal p.d.f. (3.2) for case 2 as an
example is shown in figure 9. Here the length scale was normalized with the mean
value lm. These were obtained from each p.d.f. generated by DNS and are listed in
table 1. Both p.d.f.s show a steep rise at the origin and an exponential decay for large
values of l/ lm. The inset log-linear plot shows that the slope of the exponential is
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Figure 9. The marginal p.d.f. from the DNS for case 2 compared to theoretical predictions
for zero and unity normalized compression rates.

somewhat steeper in the three-dimensional DNS data than in the one-dimensional
theory. Nevertheless, the agreement between the theoretically derived p.d.f. solution
and those from the DNS is satisfactory.

The comparison of the length scales listed in table 1 shows that lm is much
larger than the Kolmogorov scale but of the order of the Taylor scale. In order
to demonstrate this (see the companion paper, Peters & Wang 2005) a stochastic
one-dimensional simulation from which we conclude that the cutting frequency per
unit length λ multiplied by lm should be of the order of the inverse of the integral
time scale τ = k/ε. Then (4.33) with ρ = l−1

m substituted results in

lm ∝ (Dτ )1/2 ∝ (ν k/ε)1/2 ∝ λ, (4.36)

showing that the mean length should indeed be of the order of the Taylor scale.

5. Conclusions
Having chosen a method of numerically identifying random geometrical elements

in scalar turbulence we were able to answer the first of Corrsin’s questions quoted in
the introduction: that a naturally identifiable geometry is our dissipation elements.
We have in this paper tried to answer the second question on the role they play. The
third question has also be addressed by inventing a stochastic ‘game’ of cutting and
reconnecting such random elements.

The gradient trajectory method that we have introduced here is able to identify
finite-size regions in a turbulent scalar field without arbitrariness. It is interesting that
the resulting dissipation elements, though they may appear convoluted by comparison
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to vortex filaments, still obey on the average some basic rules: (i) Their linear length-
scale distribution function agrees with the theoretically derived distribution function;
(ii) the conditional mean of the scalar difference follows the Kolmogorov scaling over
a larger range than the classical structure function.

The authors acknowledge the funding of this work by the Deutsche Forschungs-
gemeinschaft under grant PE 241/30–1. They have greatly benefited from inter-
actions with colleagues, and are particularly grateful to Carl Gibson, Heinz Pitsch,
Martin Oberlack, Rupert Klein, Chenning Tong, Sutanu Sarkar and Parviz Moin.

REFERENCES

Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity
and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30,
2343–2353.

Corrsin, S. 1971 Random geometric problems suggested by turbulence. In Statistical Models and
Turbulence. Lecture Notes in Physics, vol. 12 (ed. M. Rosenblatt & C. Van Atta), pp. 300–316.
Springer.

D’Acunto, D. & Kurdyka, K. 2004 Bounds for gradient trajectories of polynomials and definable
functions with applications. J. Diffl Geom. (submitted).

Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov . Cambridge University Press.

Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence I. Zero gradient points and
minimal gradient surfaces. Phys. Fluids 11, 2305–2315.

Jimenez, J. & Wray, A. 1998 On the characteristics of vortex filaments in isotropic turbulence.
J. Fluid Mech. 373, 255–285.

Meneveau, C. & Sreenivasan, K. 1991 The multifractional nature of turbulent energy dissipation.
J. Fluid Mech. 224, 429–484.

Miyauchi, T. & Tanahashi, M. 2001 Coherent fine scale structure in turbulence. In IUTAM Symp.
on Geometry and Statistics of Turbulence (ed. T. Kambe et al.), pp. 67–75. Kluwer.

Moffatt, H. K. 2001 The topology of scalar fields in 2d and 3d turbulence. In IUTAM Symp. on
Geometry and Statistics of Turbulence (ed. T. Kambe et al.), pp. 13–22. Kluwer.

Pantano, C., Sarkar, S. & Williams, F. 2003 Mixing of a conserved scalar in a turbulent reacting
shear layer. J. Fluid Mech. 481, 291–328.

Papoulis, A. 1991 Probability, Random Variables and Stochastic Processes , 3rd edn. McGraw-Hill.

Peters, N. 2000 Turbulent Combustion . Cambridge University Press.

Peters, N. & Trouillet, P. 2002 On the role of quasi-one-dimensional dissipation layers in turbulent
scalar mixing. Annual Research Briefs, Center for Turbulence Research, Stanford University ,
pp. 27–40.

Peters, N. & Wang, L. 2005 Dissipation element analysis of scalar fields in turbulence. C. R.
Mechanique (submitted).

Pope, S. 2000 Turbulent Flows . Cambridge University Press.

Rogers, M. & Moser, R. 1994 Direct numerical simulation of a self-similar turbulent mixing layer.
Phys. Fluids 6, 903–923.

Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282,
163–186.

Townsend, A. 1951 On the fine structure of turbulence. Proc. R. Soc. Lond. A 208, 534–542.

Tsinober, A. 2001 An Informal Introduction to Turbulence. Kluwer.

Van Kampen, N. G. 1992 Stochastic Processes in Physics and Chemistry. Elsevier.

Wray, A. & Hunt, J. 1990 Algorithms for classification of turbulent structures. In Topological Fluid
Mechanics (ed. H. Moffat & A. Tsinober), pp. 95–104. Cambridge University Press.




